科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Generealized ARMA Models with GARCH Errors

作者: 发布时间:2014-11-03 点击数:
主讲人:郑挺国 副教授
主讲人简介:

王亚南经济研究院

 郑挺国 CV

主持人:林细细 副教授、方颖 副教授
讲座简介:

Abstract:
To capture the conditional heteroskedasticity of non-Gaussian time series, this paper extends the class of generalized autoregressive moving average (GARMA) models to the GARCH type of GARMA models, called the GARMA-GARCH models. Based on Zheng, Xiao, and Chen’s (2014) M-GARMA framework, the error sequence being a martingale difference sequence is further assumed to follow a semi-strong GARCH process. Under this semi-strong GARCH case, the solution of second-order stationarity is derived. We propose three specific models for proportional time series, nonnegative time seris, and skewed and heavy-tailed financial time series, respectively. Two estimation methods including maximum likelihood estimator (MLE) and Gauss pseudo MLE (GMLE) are then introduced for estimating the parameters. Simulation results with two examples show that the GMLE performs well and the associated parameter estimates can be used as good starting values of the MLE. Finally, three empirical investigations are carried out on realized volatility, U.S. personal saving rates and daily returns, respectively.

时间:2014-11-03 (Mon) 16:30-18:00
地点:N303 经济楼/Economics Building
讲座语言:中文
主办单位:王亚南经济研究院、威尼斯37266
承办单位:
期数:“WISE-SOE双周青年论坛”2014年秋季学期第三期(总第45讲)
联系人信息:
TOP